A Sliding-mode Based Smooth Adaptive Robust Controller for Friction Compensation
نویسندگان
چکیده
In this paper, a new approach employing both adaptive and robust methodologies is proposed for stick—slip friction compensation for tracking control of a one degree-of-freedom DC-motor system. It is well known that the major components of friction are Coulomb force, viscous force, exponential force (used to model the downward bend of friction at low velocity) and position-dependent force. Viscous force is linear and Coulomb force is linear in parameter; thus, these two forces can be compensated for by adaptive feedforward cancellation. Meanwhile, the latter two forces, which are neither linear nor linear in parameters, can only be partially compensated for by adaptive feedforward cancellation. Therefore, a robust compensator with an embedded adaptive law to ‘learn’ the upper bounding function on-line is proposed to compensate the uncancelled exponential and position-dependent friction. Lyapunov’s direct method is utilized to prove the globally asymptotic stability of the servo-system under the proposed friction compensation method. Numerical simulations are presented as illustrations. ( 1998 John Wiley & Sons, Ltd.
منابع مشابه
Energy Optimization of Under-actuated Crane model for Time-Variant Load Transferring using Optimized Adaptive Combined Hierarchical Sliding Mode Controller
This paper designs an Optimized Adaptive Combined Hierarchical Sliding Mode Controller (OACHSMC) for a time-varying crane model in presence of uncertainties. Uncertainties have always been one of the most important challenges in designing control systems, which include the unknown parameters or un-modeled dynamics in the systems. Sliding mode controller (SMC) is able to compensate the system in...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملAdaptive Sliding Mode Control of Multi-DG, Multi-Bus Grid-Connected Microgrid
This paper proposes a new adaptive controller for the robust control of a grid-connected multi-DG microgrid (MG) with the main aim of output active power and reactive power regulation as well as busbar voltage regulation of DGs. In addition, this paper proposes a simple systematic method for the dynamic analysis including the shunt and series faults that are assumed to occur in the MG. The pres...
متن کاملRobust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque
In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998